Coloring Graphs with Graphs: a Survey
نویسنده
چکیده
Many problems in and areas of graph theory can be thought of in terms of graph homomorphisms. For graphs G and H, a homomorphism from G to H is a function φ : V (G)→ V (H) such that if xy ∈ E(G) then φ(x)φ(y) ∈ E(H). (See [1] for a comprehensive introduction.) Let Hom(G,H) be the set of homomorphisms from G to H. In this survey, we will be interested in counting homomorphisms from G to H and so we let hom(G,H) = |Hom(G,H)|. When G is small relative to H, then homomorphisms from G to H roughly correspond to embeddings of G inside of H. We will focus on the case when G is large and H is small. In this case, we can think of a homomorphism from G to H as a labeling of the vertices of G with the vertices of H. Thus, we sometimes refer to a homomorphism from G to H as an H-coloring of G. Since the labeling corresponds to a homomorphism, vertices in G that are adjacent can only receive labels of vertices that are adjacent in H. We will want to allow that adjacent vertices in G receive the same label, and so permit the image graph H to have loops. We will assume throughout this survey that the pre-image graph G is simple, and so has no loops or multiple edges. Let us consider some examples of H-colorings of graphs for various H.
منابع مشابه
-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملJust chromatic exellence in fuzzy graphs
A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...
متن کاملA NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کامل